Browse By

Капризы космической погоды

Изображение: «Популярная механика»
Как известно, самый распространенный повод для начала любой беседы — это погода. А уж если за окном ненастье, так это повод для долгого интеллектуального разговора и обмена мнениями в духе «что-то погода совсем разгулялась, вот то ли дело в старые добрые времена!». Но когда вы будете жаловаться на дождь, ветер, мороз или жару в следующий раз, подумайте о том, насколько землянам повезло с погодой — ведь в других местах нашей Солнечной системы она намного более сурова. Предлагаем ознакомиться с особенностями погодных условий некоторых планет и их спутников.

Самое жаркое место — Венера

Наша ближайшая соседка очень похожа на Землю по размерам и массе (ускорение свободного падения на поверхности Венеры на 10% меньше земного) и обращается вокруг Солнца, как и наша планета, по почти круговой орбите. Это единственная твердая планета кроме Земли, обладающая плотной атмосферой, и до середины XX века ученые считали, что климат на Венере приблизительно соответствует климату нашей планеты, точнее тому, каким он был в каменноугольном периоде: теплые океаны, экзотические растения и даже, возможно, животные. Однако когда с помощью радиотелескопов удалось измерить так называемую яркостную температуру Венеры, она оказалась существенно выше ожидаемой.

Некоторые ученые связывали эти данные со свойствами ионосферы, однако в 1962 году американский аппарат Mariner 2 внес ясность в этот вопрос, впервые измерив температуру планеты с небывало близкого расстояния в 35000 км. Финальную точку поставила советская автоматическая станция «Венера-7», совершившая первую успешную посадку на эту, как выяснилось, негостеприимную планету 15 декабря 1970 года и непосредственно измерившая температуру и давление на поверхности. Условия оказались буквально адские — 475°C и 90 атм, и станция проработала всего 23 минуты. Причина столь высокой температуры — парниковый эффект: атмосфера Венеры состоит преимущественно из углекислого газа, который пропускает солнечное, но поглощает ИК-излучение, переизлучаемое поверхностью планеты. Впрочем, последние данные, полученные аппаратом Venus Express, показывают, что Венера не всегда была адским местом: когда-то на ней была вода и температура была намного ниже. Что именно пошло не так — ученым еще предстоит выяснить.

Глазами Venus Express. Венера «глазами» аппарата Venus Express в УФ- и ИК-диапазонах. Левая часть показывает температурную инверсию облачности в верхней части атмосферы, заснятую в ИК-диапазоне спектрометром VIRTIS на ночной стороне планеты (темные пятна – это холодные облака). Справа — структура облаков в УФ-диапазоне на дневной части Венеры, снятая с помощью инструмента Venus Monitoring Camera. Изображение: «Популярная механика»

Глазами Venus Express
Венера «глазами» аппарата Venus Express в УФ- и ИК-диапазонах. Левая часть показывает температурную инверсию облачности в верхней части атмосферы, заснятую в ИК-диапазоне спектрометром VIRTIS на ночной стороне планеты (темные пятна – это холодные облака). Справа — структура облаков в УФ-диапазоне на дневной части Венеры, снятая с помощью инструмента Venus Monitoring Camera. Изображение: «Популярная механика»

Самое холодное место: Луна

Исследовательский аппарат NASA LRO (Lunar Reconnaissance Orbiter), вышедший на орбиту вокруг Луны 23 июня 2009-го, за полтора года своей работы значительно увеличил количество научных данных о нашей ближайшей соседке. Он обследовал невидимую с Земли сторону Луны, а также занимался поисками воды (точнее, льда) на нашем спутнике. Изучая окрестности южного полюса Луны с помощью многоканального ИК-радиометра Diviner, LRO зафиксировал самую низкую температуру, измеренную в Солнечной системе, — минус 248°C. Такую температуру имеет дно кратера Эрмит, находящееся в вечной тени, в середине местной зимы. Это открытие сбросило с пьедестала предыдущий «полюс холода» Солнечной системы — ранее им считался Плутон, где в 2006 году радиоастрономы Гарвард-Смитсоновского центра астрофизики с помощью восьми микроволновых телескопов Submillimeter Array на Гавайях зафиксировали температуру в минус 230°C.

Ледовый склад. Высокие стены кратера Эрмит обеспечивают постоянное затенение на его дне, где температура никогда не поднимается выше минус 240°C. Такие условия благоприятны для сохранения водяного льда, который при более высоких температурах просто испаряется. Впрочем, и на других планетах Солнечной системы вполне могут существовать подобные затененные уголки с экстремально низкими температурами. Изображение: «Популярная механика»

Ледовый склад
Высокие стены кратера Эрмит обеспечивают постоянное затенение на его дне, где температура никогда не поднимается выше минус 240°C. Такие условия благоприятны для сохранения водяного льда, который при более высоких температурах просто испаряется. Впрочем, и на других планетах Солнечной системы вполне могут существовать подобные затененные уголки с экстремально низкими температурами. Изображение: «Популярная механика»

Самые мощные грозы — Сатурн

Летом прошлого года аппарату Cassini впервые удалось зафиксировать изображения электрического шторма на Сатурне. До этого в течение пяти лет шторм только прослушивался в радиодиапазоне, а изображение было невозможно получить из-за засветки, которую давали кольца Сатурна. Однако во время равноденствия в августе 2009 года большая часть колец находилась в тени и астрономы впервые зафиксировали вспышки, сопровождающие шторм. По оценкам, мощность сатурнианских молний на три порядка превосходит мощность земных молний во время самых сильных гроз, а размеры шторма составляют порядка 4000 км.

Аллея штормов. Штормы на Сатурне возникают в одном и том же месте — в районе 35 градусов южной широты, астрономы называют это место «аллеей штормов». Причины этого пока не ясны, штормы могут продолжаться в течение нескольких месяцев, исчезать на годы и затем снова возникать на том же месте. Гигантский облачный фронт хорошо виден с Земли даже в любительский телескоп. Изображение: «Популярная механика»

Аллея штормов
Штормы на Сатурне возникают в одном и том же месте — в районе 35 градусов южной широты, астрономы называют это место «аллеей штормов». Причины этого пока не ясны, штормы могут продолжаться в течение нескольких месяцев, исчезать на годы и затем снова возникать на том же месте. Гигантский облачный фронт хорошо виден с Земли даже в любительский телескоп. Изображение: «Популярная механика»

Самый сильный ветер — Нептун

Еще одна планета, где бушуют шторма, — Нептун. Она находится далеко от Солнца, но имеет внутренний источник энергии, природа которого ученым пока не ясна. Однако о его наличии свидетельствует тот факт, что планета излучает в окружающее пространство более чем в 2,5 раза больше энергии, чем получает от Солнца. Этот источник, причиной которого может быть радиоактивный распад, разогрев гравитационным сжатием или что-то другое, подпитывает активность атмосферы газового гиганта, которая порождает ветра такой силы, что по сравнению с ними самые сильные земные ураганы показались бы легким дуновением. В 1989 году космический аппарат Voyager 2 зарегистрировал на Нептуне Большое Темное Пятно (Great Dark Spot) — гигантский шторм размерами 8000х13000 км. Причем, в отличие от Большого Красного Пятна, многовекового шторма на Юпитере, нептунианский был «кратковременным» — всего через пять лет, когда космический телескоп «Хаббл» получил возможность взглянуть на планету, шторм уже рассеялся. Скорость ветра, измеренная во время этого шторма, составила 2400 км/ч.

Атмосфера Нептуна состоит из водорода (80%) и гелия с небольшой добавкой метана (порядка 1%). Именно метан придает планете голубой с зеленым оттенком цвет. Под атмосферой находится ионный океан — сжатая гигантским давлением смесь водяного, аммиачного и метанового льдов, находящихся в ионном состоянии. Некоторые исследователи (например, из Калифорнийского университета в Беркли) предполагают, что в условиях высоких температур метан распадается на водород и углерод, а последний кристаллизуется в форме алмаза. Поэтому не исключено, что в нептунианском океане может существовать такое уникальное природное явление, как алмазный град. Но пока это только предположения, подтвердить которые можно будет в далеком будущем (сегодня даже неизвестно, есть ли у планеты твердое ядро, — ответ на этот вопрос могут дать сейсмические исследования).

Самые непредсказуемые сутки

Поговорка «Неизбежно, как восход солнца» присутствует в фольклоре многих земных народов. Однако по отношению к некоторым небесным телам эту поговорку следует употреблять с большой осторожностью. Гиперион, 16-й спутник Сатурна, названный в честь греческого титана, отца Гелиоса и сына Урана и Геи, представляет собой каменно-ледяную глыбу размерами 410х260х220 км, обращающуюся вокруг Сатурна на расстоянии примерно в 1,5 млн км.

Это самое большое из известных тел, имеющее иррегулярную (несферическую) форму. А еще это единственная из лун в Солнечной системе, вращение которой имеет хаотический характер: ось вращения колеблется в пространстве таким образом, что предсказать положение Гипериона в какой-либо момент времени представляется невозможным. Это удалось подтвердить с помощью снимков, сделанных аппаратом Voyager 2, а также серией фотометрических исследований с Земли. Такое поведение, по-видимому, объясняется несколькими факторами: иррегулярной формой луны, эксцентрической орбитой и наличием в непосредственной близости другого спутника — Титана (который находится с Гиперионом в орбитальном резонансе 3:4), наряду с действием приливных сил со стороны самого Сатурна. Интересно, что благодаря такому хаотическому вращению поверхность Гипериона более-менее равномерно покрыта темной пылью, которая попадает с другого спутника – Фебы — на его поверхность. У еще одного спутника Сатурна — Япета — этой пылью покрывается только «передняя» (по ходу орбитального движения) поверхность.

Самые характерные времена года. Самые характерные времена года наблюдаются на далеком Уране, наклон которого к плоскости эклиптики составляет 82 градуса (то есть он фактически лежит «на боку»). В результате времена года там самые «классические» — летом северное полушарие полностью освещено Солнцем, а южное полностью погружено во тьму полярной ночи; зимой они меняются местами. Уранианский год составляет 84 земных (в 2006 году планета проходила весеннее равноденствие), так что каждое время года на Уране длится 21 земной год, и выражение «долгая зимняя ночь» приобретает там пугающий смысл даже для людей, привыкших к сибирским зимам. Изображение: «Популярная механика»

Самые характерные времена года
Самые характерные времена года наблюдаются на далеком Уране, наклон которого к плоскости эклиптики составляет 82 градуса (то есть он фактически лежит «на боку»). В результате времена года там самые «классические» — летом северное полушарие полностью освещено Солнцем, а южное полностью погружено во тьму полярной ночи; зимой они меняются местами. Уранианский год составляет 84 земных (в 2006 году планета проходила весеннее равноденствие), так что каждое время года на Уране длится 21 земной год, и выражение «долгая зимняя ночь» приобретает там пугающий смысл даже для людей, привыкших к сибирским зимам. Изображение: «Популярная механика»

Самый большой и самый долгий шторм: Юпитер

Самая большая планета Солнечной системы, названная в честь главного бога греческого пантеона, привлекала внимание астрономов с древних времен, а с момента появления телескопов стало возможным рассмотреть некоторые подробности на ее диске. В 1665 году Джованни Кассини, профессор Университета Болоньи, увидел на поверхности Юпитера образование, которое назвали Большим Красным Пятном (БКП).

Впервые Большое Красное Пятно увидел Джованни Кассини в 1665 году. Первоначально астрономы предполагали, что это твердое образование на поверхности планеты, но аппараты Pioneer 10, Voyage 1 и 2, Galileo, Cassini и New Horizons позволили рассмотреть Большое Красное Пятно во всех подробностях. Изображение: «Популярная механика»

Впервые Большое Красное Пятно увидел Джованни Кассини в 1665 году. Первоначально астрономы предполагали, что это твердое образование на поверхности планеты, но аппараты Pioneer 10, Voyage 1 и 2, Galileo, Cassini и New Horizons позволили рассмотреть Большое Красное Пятно во всех подробностях. Изображение: «Популярная механика»

Это атмосферное образование — гигантский антициклон размерами 35 000 км в длину и 14 000 в ширину (причем столетие назад Пятно было в два больше), то есть в три раза больше Земли. Большое Красное Пятно немного дрейфует по долготе в ту или иную сторону, при этом широта (примерно 22° южной широты) остается той же. Газ в антициклоне вращается против часовой стрелки около шести земных суток, при этом скорость ветра на краях этого урагана достигает 360 км/ч. В начале 2010 года, используя ИК-спектрометр VISIR (VLT Imager and Spectrometer for mid Infrared) телескопа VLT (Very Large Telescope) Европейской южной обсерватории, астрономы впервые получили возможность познакомиться с тепловой структурой урагана и распределением температур внутри него. Однако по-прежнему не ясно, что придает пятну красный цвет.

Встреча двух штормов. На трех фотографиях, сделанных с помощью телескопа «Хаббл» в 2008 году, видно, как Большое Красное Пятно поглощает небольшой шторм, подошедший к нему слишком близко. От него остается только небольшой антициклонный завиток. По одной из версий, БКП живет долго, поглощая более мелких собратьев и подпитываясь их энергией. Изображение: «Популярная механика»

Встреча двух штормов
На трех фотографиях, сделанных с помощью телескопа «Хаббл» в 2008 году, видно, как Большое Красное Пятно поглощает небольшой шторм, подошедший к нему слишком близко. От него остается только небольшой антициклонный завиток. По одной из версий, БКП живет долго, поглощая более мелких собратьев и подпитываясь их энергией. Изображение: «Популярная механика»

Самые большие пыльные бури: Марс

Марс — одна из самых вероятных целей (а точнее, единственная) первой межпланетной экспедиции. Однако марсонавтов, прибывших на Красную планету, поджидает очень неприятный сюрприз — пыльные бури. Их время — весна, когда полярные ледяные шапки, состоящие из твердого углекислого газа (сухого льда) и простирающиеся на половину полушария, испаряются, увеличивая атмосферное давление; температурный градиент между «оттаявшими» и покрытыми льдом областями порождает сильный ветер, циркулирующий над этими областями; свою долю в зарождение бури вкладывают и стоковые ветры, стекающие с полярной шапки. Ветер поднимает пыль, и в результате появляется пыльная буря, которая может простираться на сотни и тысячи километров и иногда даже охватывать всю планету и продолжаться неделями и месяцами. Причины, по которым локальные бури быстро растут и переходят в глобальные, ученым пока не ясны. Эти бури играют большую роль в формировании марсианского климата, изменяя тепловой баланс, распределение льда и водяных паров как в глобальном, так и в локальном масштабе (в особенности в полярных регионах). Частицы пыли, поднятые бурей, поглощают солнечное излучение и разогревают атмосферу — во время бури 2001 года с помощью спектрометра TES (Thermal Emission Spectrometer), установленного на борту станции NASA Mars Global Surveyor, было зафиксировано увеличение температуры на 30°C. К тому же трение частиц пыли порождает мощные электрические разряды. В 2007 году пыльная буря доставила много неприятных минут команде NASA, отвечавшей за работу ровера Opportunity. Дело в том, что основной источник энергии ровера — солнечные батареи, а во время пыльной бури количество падающего на поверхность солнечного света резко снижается.

Пыльные дьяволы. Еще одно любопытное марсианское природное явление — «пыльные дьяволы». Это локальные торнадо, пылевые смерчи, которые образуются при закручивании восходящих потоков в атмосфере. «Пыльные дьяволы» не редкость и на Земле — их можно увидеть практически в любой песчаной пустыне. Но на Марсе они вырастают до совершенно пугающего масштаба — их диаметр может достигать полукилометра, а высота — 8 км. Пыль в них сильно электризуется при вращении, генерируя сильные электрические поля. Следы марсианских «пыльных дьяволов» часто наблюдаются на снимках, сделанных орбитальными станциями (тем же Mars Global Surveyor), а марсианский ровер Spirit сумел даже заснять это явление относительно крупным планом в кратере Гусева. Существует версия, что именно «пыльный дьявол» стряхнул пыль с солнечных панелей Spirit, продлив функционирование марсохода. Изображение: «Популярная механика»

Пыльные дьяволы
Еще одно любопытное марсианское природное явление — «пыльные дьяволы». Это локальные торнадо, пылевые смерчи, которые образуются при закручивании восходящих потоков в атмосфере. «Пыльные дьяволы» не редкость и на Земле — их можно увидеть практически в любой песчаной пустыне. Но на Марсе они вырастают до совершенно пугающего масштаба — их диаметр может достигать полукилометра, а высота — 8 км. Пыль в них сильно электризуется при вращении, генерируя сильные электрические поля. Следы марсианских «пыльных дьяволов» часто наблюдаются на снимках, сделанных орбитальными станциями (тем же Mars Global Surveyor), а марсианский ровер Spirit сумел даже заснять это явление относительно крупным планом в кратере Гусева. Существует версия, что именно «пыльный дьявол» стряхнул пыль с солнечных панелей Spirit, продлив функционирование марсохода. Изображение: «Популярная механика»

Самая сильная вулканическая активность: Ио

Ио, ближайший спутник Юпитера, до 1970-х считался «мертвым» миром наподобие Луны. Однако в 1979 году инженер Лаборатории реактивного движения NASA Линда Морабито обнаружила на одном из технических снимков, сделанных автоматической межпланетной станцией Voyager 1 для более точного определения собственного местоположения, странное пятно. При внимательном изучении оказалось, что на снимках есть еще несколько подобных пятен и это — газопылевые облака вулканического происхождения, выброшенные на высоту более 300 км двумя вулканами, которые были названы Пеле (богиня вулканов и огня в гавайской мифологии) и Локи (германо-скандинавский бог огня). Яркая красно-оранжево-желтая поверхность Ио резко отличается от поверхностей большинства других спутников, выглядящих гораздо более скучно. Такая раскраска — следствие высокой вулканической активности в недрах Ио. На этом спутнике размерами чуть больше нашей Луны расположено более 400 активных вулканов, выбрасывающих серу и ее соединения, которые затем оседают на поверхности спутника, окрашивая ее в характерные цвета. Причина столь активного вулканизма — движение Ио по орбите вокруг Юпитера и взаимодействие (орбитальный резонанс) с двумя другими спутниками — Европой и Ганимедом. Из-за резонанса орбита Ио имеет небольшой эксцентриситет, и спутник, обращенный одной стороной к Юпитеру, испытывает либрации, то есть немного «покачивается», в результате чего возникают мощные приливные силы, создающие приливной горб с амплитудой в несколько сотен метров. Эти деформации и становятся источником тепловой энергии, подпитывающей вулканизм Ио. Вулканы Ио, кстати, куда мощнее земных собратьев — в частности, Локи считается самым мощным вулканом в Солнечной системе (по некоторым оценкам, его мощность превышает мощность всех земных вулканов вместе взятых).

Ио. Изображение: «Популярная механика»

One thought on “Капризы космической погоды”

  1. Axl says:

    весьма познавательно

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *